Ministry of Education and Science of Ukraine Dnipro University of Technology

MINING FACULTY
 DEPARTMENT OF TRANSPORT SYSTEMS AND TECHNOLOGIES

WORK PROGRAM OF THE ACADEMIC DISCIPLINE
 " Industrial Vehicles "

Prolonged: for 20 _ / 20__ academic year \qquad (\qquad) "__" \qquad 20 \qquad for 20 \qquad 20 \qquad academic year \qquad (\qquad) "_" \qquad 20 \qquad
(Signature, name, date)

Dnipro
NTU "DP"
2018

Work program of the academic discipline "Industrial Vehicles" for bachelor's specialty 185 "Oil and Gas Engineering and Technology" / OV Denyschenko / NTU "Dnipro Polytechnic" Department of transport systems and technologies. - DA: NTU «DP» 2018-13 p.

Autors:
Denyschenko A.

The work program regulates:

- key goals and objectives;
- the disciplinary learning outcomes generated through the transformation of the intended learning outcomes of the degree program;
- the content of the discipline formed according to the criterion "disciplinary learning outcomes";
- the discipline program (thematic plan by different types of classes);
- distribution of the discipline workload by different types of classes;
- an algorithm for assessing the level of achievement of disciplinary learning outcomes (scales, tools, procedures and evaluation criteria);
- criteria and procedures for evaluating the academic achievements of applicants by discipline;
- the contents of the educational and methodological support of the discipline;

The work program is designed to implement a competency approach in planning an education process, delivery of the academic discipline, preparing students for control activities, controlling the implementation of educational activities, internal and external quality assurance in higher education, accreditation of degree programs within the specialty.

CONTENTS

1 DISCIPLINE OBJECTIVES 4
2 INTENDED DISCIPLINARY LEARNING OUTCOMES 4
3 BASIC DISCIPLINES 4
4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES 5
5 DISCIPLINE PROGRAM BY TYPES OF CLASSES 5
6 KNOWLEDGE PROGRESS TESTING6
6.1 GRADING SCALES 6
6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES 7
6.3 EVALUATION CRITERIA 8
7 TOOLS, EQUIPMENT, AND SOFTWARE 11

1 DISCIPLINE OBJECTIVES

In the educational and professional programs of the Dnipro University of Technology specialty 185 "Oil and gas engineering and technology", the distribution of program learning outcomes (NRN) for the organizational forms of the educational process is done. In particular, the following learning outcomes are attributed to the discipline V2.4 "Industrial Transport":

VR2.3	Calculate and adjust the modes of hazonaftopostachannya for different operating conditions
VR2.4	Use practical methods of diagnosis of disability hazonaftopostachannya
VR2.5	To ensure the safety components of hazonaftopostachannya according to operating rules
VR2.6	Assess the quality and restore the properties of the elements of hazonaftopostachannya specific conditions
VR2.8	Organize work to ensure adequate capacity and safe operation of the links hazonaftopostachannya
VR2.9	Control systems hazonaftopostachannya operation using modern methods of data analysis and processing

The objective of discipline - formation of knowledge for operation Vehicle industry.

The implementation of the objective requires transforming program learning outcomes into the disciplinary ones as well as an adequate selection of the contents of the discipline according to this criterion.

2 INTENDED DISCIPLINARY LEARNING OUTCOMES

Code NRN		Disciplinary learning outcomes (DRN)	
	DRN code	content	
VR2.3	VR2.3-V2.4	use basic methods for solving scientific and engineering problems to improve vehicles systems hazonaftopostachannya	
VR2.4	VR2.4-V2.4	be aware of diagnostic methods of performance vehicles systems hazonaftopostachannya	
VR2.5	VR2.5-V2.4	own method of calculation of security performance vehicles systems hazonaftopostachannya	
VR2.6	VR2.6-V2.4	determine the degree of perfection and promising vehicles hazonaftopostachannya systems for different operating conditions	
VR2.8	VR2.8-V2.4	perform applied research organization in monitoring transport links industrial gas industry	
VR2.9	VR2.9-V2.4	own modern methods of analysis and processing of oil and gas industry transportation systems	

3 BASIC DISCIPLINES

Subjects	The acquired learning outcomes
B3Fizyka	Use the basic physical laws and phenomena
F25Tehnichna mechanics and strength of materials	Conduct a kinematic analysis of mechanisms and their static and dynamic calculation
F20Transportni Systems and	Evaluate performance vehicles to ensure certain traffic volumes

Subjects	The acquired learning outcomes
Technologies	in different conditions of oil and gas production
	Master the basics calculations vehicles
	Develop technological systems move cargo oil company

4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES

Type of classes		Distribution by forms of education, hours					
		Full-time		Part-time		Distance	
		Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)
Lecture	72	26	46	8	64	4	68
Practical	18	13	5	4	14	4	14
Laboratory	-	-	-	-	-	-	-
Workshops	-	-	-	-	-	-	-
Total	90	39	51	12	78	8	82

5 DISCIPLINE PROGRAM BY TYPES OF CLASSES

Ciphers DRN	Types and topics of training sessions	The volume of components, hours
	LECTURES	72
VR2.3-V2.4	1The role of transport in public life	8
	The main types of industrial transport	
VR2.4-V2.4	2 Freight and cargo industry	8
	Characteristics of goods	
	Freight traffic and component level industrial transport	
$\begin{aligned} & \text { VR2.3-V2.4 } \\ & \text { VR2.5-V2.4 } \end{aligned}$	3 Scope and Classification of rail transport	8
	Elements of railway transport	
	Basic theory and calculations of means of rail transport	
$\begin{aligned} & \text { VR2.3-V2.4 } \\ & \text { VR2.5-V2.4 } \end{aligned}$	4 Scope and Classification of Road Transport	8
	Elements of the system of road transport	
	Basic theory and calculations of road transport vehicles	
$\begin{aligned} & \text { VR2.3-V2.4 } \\ & \text { VR2.5-V2.4 } \end{aligned}$	5 Scope and Classification of conveyor transport	8
	Elements of conveyor transport system	
	Basic theory and calculations means of conveyor transport	
VR2.6-V2.4	6 Scope and classification of water transport	8
	Elements of water transport system	
	Basic theory and calculations of water transport	
VR2.8-V2.4	7 Scope and Classification of slurry transport	8
	Elements slurry transport system	
	Basic theory and calculations of hydraulic transport vehicles	
VR2.9-V2.4	8 Scope and classification of urban electric vehicles	8
	Elements of urban electric transport	
	Basic theory and calculations city electric vehicles	
$\begin{aligned} & \hline \text { VR2.3-V2.4 } \\ & \text { VR2.5-V2.4 } \\ & \hline \end{aligned}$	9 The latest global trends in transport systems	8
	PRACTICAL TRAINING	18

Ciphers DRN	Types and topics of training sessions	The volume of components, hours
$\begin{aligned} & \hline \text { VR2.3-V2.4 } \\ & \text { VR2.5-V2.4 } \\ & \hline \end{aligned}$	1-5 Performance calculations road, rail, conveyor, water, slurry transport	18
	LECTURES	60
ZR9-1-7	Constitutional order Ukraine	8
ZR9-1-7	Bases of Administrative Law and Procedure	8
ZR9-1-7	Labor Law Ukraine	8
ZR9-1-7	Civil Law and Procedure	8
ZR9-1-7	Family Law	10
ZR9-1-7	Commercial law	8
ZR9-1-7	Criminal Law and Procedure	10
	PRACTICAL TRAINING	30
ZR9-1-7	Constitutional order Ukraine	4
ZR9-1-7	Bases of Administrative Law and Procedure	4
ZR9-1-7	Labor Law Ukraine	4
ZR9-1-7	Civil Law and Procedure	4
ZR9-1-7	Family Law	5
ZR9-1-7	Commercial law	4
ZR9-1-7	Criminal Law and Procedure	5
TOTAL		90

6 KNOWLEDGE PROGRESS TESTING

Certification of student achievement is accomplished through transparent procedures based on objective criteria in accordance with the University Regulations "On Evaluation of Higher Education Applicants' Learning Outcomes".

The level of competencies achieved in relation to the expectations, identified during the control activities, reflects the real result of the student's study of the discipline.

6.1 GRADING SCALES

Assessment of academic achievement of students of the Dnipro University of Technology is carried out based on a rating (100-point) and institutional grading scales. The latter is necessary (in the official absence of a national scale) to convert (transfer) grades for mobile students.

The scales of assessment of learning outcomes of the NTUDP students

Rating	Institutional
$90 \ldots 100$	Excellent
$74 \ldots 89$	Good
$60 \ldots 73$	Satisfactory
$0 \ldots 59$	Failed

Discipline credits are scored if the student has a final grade of at least 60 points. A lower grade is considered to be an academic debt that is subject to liquidation in
accordance with the Regulations on the Organization of the Educational Process of NTUDP.

6.2 DIAGNOSTIC TOOLS AND EVALUATION PROCEDURES

The content of diagnostic tools is aimed at controlling the level of knowledge, skills, communication, autonomy, and responsibility of the student according to the requirements of the National Qualifications Framework (NQF) up to the 7th qualification level during the demonstration of the learning outcomes regulated by the work program.

During the control activities, the student should perform tasks focused solely on the demonstration of disciplinary learning outcomes (Section 2).

Diagnostic tools provided to students at the control activities in the form of tasks for the intermediate and final knowledge progress testing are formed by specifying the initial data and a way of demonstrating disciplinary learning outcomes.

Diagnostic tools (control tasks) for the intermediate and final knowledge progress testing are approved by the appropriate department.

Type of diagnostic tools and procedures for evaluating the intermediate and final knowledge progress testing are given below.

Diagnostic and assessment procedures

INTERMEDIATE CONTROL			FINAL ASSESSMENT	
training sessions	diagnostic tools	procedures	diagnostic tools	procedures
lectures	control tasks for each topic	task during lectures	lomprehensive reference work	determining the average results of intermediate controls;
practical	control tasks for each topic	tasks during practical classes	(CCW)	CCW performance during the examination at the request of the student
	or individual task	tasks during independent work		

During the intermediate control, the lectures are evaluated by determining the quality of the performance of the control specific tasks. Practical classes are assessed by the quality of the control or individual task.

If the content of a particular type of teaching activity is subordinated to several descriptors, then the integral value of the assessment may be determined by the weighting coefficients set by the lecturer.

Provided that the level of results of the intermediate controls of all types of training at least 60 points, the final control can be carried out without the student's immediate participation by determining the weighted average value of the obtained grades.

Regardless of the results of the intermediate control, every student during the final knowledge progress testing has the right to perform the CDF, which contains tasks covering key disciplinary learning outcomes.

The number of specific tasks of the CDF should be consistent with the allotted time for completion. The number of CDF options should ensure that the task is individualized.

The value of the mark for the implementation of the CDF is determined by the average evaluation of the components (specific tasks) and is final.

The integral value of the CDF performance assessment can be determined by taking into account the weighting factors established by the department for each NLC descriptor.

6.3 EVALUATION CRITERIA

The actual student learning outcomes are identified and measured against what is expected during the control activities using criteria that describe the student's actions to demonstrate the achievement of the learning outcomes.

To evaluate the performance of the control tasks during the intermediate control of lectures and practicals the assimilation factor is used as a criterion, which automatically adapts the indicator to the rating scale:

$$
\mathrm{O}_{\mathrm{i}}=100 \mathrm{a} / \mathrm{m}
$$

where a - number of correct answers or significant operations performed according to the solution standard; m - the total number of questions or substantial operations of the standard.

Individual tasks and complex control works are expertly evaluated using criteria that characterize the ratio of competency requirements and evaluation indicators to a rating scale.

The content of the criteria is based on the competencies identified by the NLC for the Bachelor's level of higher education (given below).

General criteria for achieving learning outcomes 7th qualification for LDCs (BA)

Integral competence is the ability to solve complex problems and specialized practical problems in a particular area of professional activities or in a learning process that involves the use of certain theories and methods of the relevant scientific areas and characterized by complexity and conditions uncertainty.

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	
Knowledge evaluation		
- Conceptual knowledge acquired during the training and professional activities, including some knowledge of modern achievements; critical	- A great - proper, reasonable, sensible. Measures the presence of: - conceptual knowledge; - a high degree of state ownership issues; - critical understanding of the main theories, principles, methods and concepts in education and careers	$95-100$
	A non-gross contains mistakes or errors	$90-94$
	The answer is correct but has some inaccuracies	$85-89$
	A correct some inaccuracies but has also proved insufficient	$80-84$

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation
understanding of the main theories, principles, methods, and concepts in education and careers	The answer is correct but has some inaccuracies, not reasonable and meaningful	74-79
	A fragmentary	70-73
	A student shows a fuzzy idea of the object of study	65-69
	Knowledge minimally satisfactory	60-64
	Knowledge unsatisfactory	<60
Ability		
- solving complex problems and unforeseen problems in specialized areas of professional and/or training, which involves the collection and interpretation of information (data), choice of methods and tools, the use of innovative approaches	- The answer describes the ability to: - identify the problem; - formulate hypotheses; - solve problems; - choose adequate methods and tools; - collect and interpret logical and understandable information; - use innovative approaches to solving the problem	95-100
	The answer describes the ability to apply knowledge in practice with no blunders	90-94
	The answer describes the ability to apply knowledge in practice but has some errors in the implementation of a requirement	85-89
	The answer describes the ability to apply knowledge in practice but has some errors in the implementation of the two requirements	80-84
	The answer describes the ability to apply knowledge in practice but has some errors in the implementation of the three requirements	74-79
	The answer describes the ability to apply knowledge in practice but has some errors in the implementation of the four requirements	70-73
	The answer describes the ability to apply knowledge in practice while performing tasks on the model	65-69
	A characterizes the ability to apply knowledge in performing tasks on the model, but with uncertainties	60-64
	The level of skills is poor	<60
Communication		
- report to specialists and non-specialists of information, ideas, problems, solutions and their experience in the field of professional activity; - the ability to form an effective communication strategy	- Fluent problematic area. Clarity response (report). Language - correct; - - net; - - clear; - - accurate; - - logic; - - expressive; - - concise. Communication strategy: coherent and consistent development of thought; availability of own logical reasoning; relevant arguments and its compliance with the provisions defended; the correct structure of the response (report);	95-100

descriptors NLC	$\begin{array}{c}\text { Requirements for knowledge, communication, } \\ \text { autonomy and responsibility }\end{array}$	$\begin{array}{c}\text { Indicator } \\ \text { evaluation }\end{array}$
	$\begin{array}{l}\text { correct answers to questions; } \\ \text { appropriate equipment to answer questions; } \\ \text { the ability to draw conclusions and formulate proposals }\end{array}$	
	$\begin{array}{l}\text { Adequate ownership industry issues with minor faults. } \\ \text { Sufficient clarity response (report) with minor faults. } \\ \text { Appropriate communication strategy with minor faults }\end{array}$	$90-94$
	$\begin{array}{l}\text { Good knowledge of the problems of the industry. Good } \\ \text { clarity response (report) and relevant communication } \\ \text { strategy (total three requirements are not implemented) }\end{array}$	$85-89$
	$\begin{array}{l}\text { Good knowledge of the problems of the industry. Good } \\ \text { clarity response (report) and relevant communication } \\ \text { strategy (a total of four requirements is not implemented) }\end{array}$	$80-84$
$\begin{array}{ll}\text { Good knowledge of the problems of the industry. Good } \\ \text { clarity response (report) and relevant communication } \\ \text { strategy (total not implemented the five requirements) }\end{array}$	$74-79$	

clarity response (report) and relevant communication

strategy (a total of seven requirements not implemented)\end{array}\right]: 70-73\)

descriptors NLC	Requirements for knowledge, communication, autonomy and responsibility	Indicator evaluation
	- independent evaluation judgments; - high level of formation of general educational skills; - search and analysis of information resources	
	Confident personality possession competency management (not implemented two requirements)	$90-94$
	Good knowledge management competencies personality (not implemented three requirements)	$85-89$
	Good knowledge management competencies personality (not implemented the four requirements)	$80-84$
	$74-79$	
	Satisfactory ownership of individual competence management (not implemented seven requirements)	$70-73$
	Satisfactory ownership of individual competence management (not implemented eight claims)	$65-69$
	The level of autonomy and responsibility fragmented	$60-64$
	The level of autonomy and responsibility poor	<60

7 TOOLS, EQUIPMENT, AND SOFTWARE

Technical training tools via multimedia software.
Distance learning platform Moodle.

8 RECOMMENDED SOURCES

1. Transport in mines: textbook for high schools [Text] / Sub. Ed. prof. MJ Bilichenko. - 3rd ed. - D: National Mining University, 2005. - 636 p.
2. Эlektropodvyzhnoy composition of industrial transport [Text] / Pod. Ed. LV Ballon. - M .: Transport, 1987. - 296 p.
3. Vasilyev, NV Car Kit Shipping karerov [Text] / MV Vasilyev, ZL Sirotkina, V. Smirnov. - M .: Nedra, 1973. - 280 p.
4. Konovalov, VS Эffektyvnoho interaction of special areas and species transport unyversalnыh [Text] / VS Konovalov, TVKorotkyna, IV Rogozhina. - M .: Transport, 1977-383 p.
5. Vasilyev, NV Transportnыe processes and equipment for Career[Text] / MV Vasilyev. - M .: Nedra, 1986. - 240 p.
6. Chengde equipment [Text]/ Nomenklaturnыy catalog 2/15/86 / 2. - M., 1986. -56 p .
7. Horovoy, AI Directory hornotransportnыm machines continuously for action[Text]/ AI Horovoy. - M .: Nedra, 1982. - 192 p.
8. Dryzhenko, AJ Career hirnychotransportni technological systems: monograms. [Text] / AJ Dryzhenko. - D., State University "NSU", 2011. - 542 p. Ros.movoyu
9. Novozhilov, MG Open Gorne work: "Technology and Complex mechanization" [Text]: Textbook. / MG Novozhylov, GD Pchelkyn, VS Эskyn. - 2nd ed. - K .: High School, 1990. - 320 p.
10. Bilichenko, MJ Basic theory and calculations means of transportation mines, teach. guide [Text] / M. Bilichenko, OV Denyschenko. - 2nd ed. - D .: National Mining University, 2008. - 103 p.
11. Renhevych, AA Performance calculations transport systems quarries: teach. guide [Text] / AA Renhevych, OV Denyschenko. - D .: National Mining University, 2005. - 99 p.
12. Shirin LN Traffic-pit: teach. guidances. / LN Shirin, AS Prygunov, OV Denyschenko; N-of Education and Science of Ukraine, Nat. Hearne. Univ. - D: NSU, 2015. - 241 p.

Educational edition

WORK PROGRAM OF THE ACADEMIC DISCIPLINE
"Industrial Vehicles"
185 "Oil and gas engineering and technology"

Prepared for publication
Dnipro University of Technology.
Certificate of registration in the State Register, control number 1842
49005, Dnipro, Dmytro Yavornytskoho Ave. 19

